Reaction of Vinylidenecyclopropanes with Aromatic Imines in the Presence of Lewis Acids

A. V. Stepakov, A. G. Larina, A. P. Molchanov, L. V. Stepakova, G. L. Starova, and R. R. Kostikov
St. Petersburg State University, Universitetskii pr. 26, St. Petersburg, 198504 Russia

Received January 25, 2006

Abstract

Methyl-2-(2-methylpropenylidene)-1-phenylcyclopropane, 7-(2-methylpropenylidene)bicyclo[4.1.0]heptane, and (Z)-9-(2-methylpropenylidene)bicyclo[6.1.0]non-4-ene react with N-benzylideneanilines in the presence of boron trifluoride-ether complex to give pyrrolidine derivatives. Reactions of 1-methyl-1-phenyl-2-diphenylvinylidenecyclopropane with N-benzylideneanilines in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{Yb}(\mathrm{OTf})_{3}$, or $\mathrm{Sc}(\mathrm{OTf})_{3}$ lead to the formation of substituted 1,2,3,4-tetrahydroquinolines. 7-Diphenylvinylidenebicyclo[4.1.0]heptane in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ undergoes isomerization into 5-phenyl-8,9,10,11-tetrahydro-7 H cyclohepta $[a]$ naphthalene.

DOI: 10.1134/S1070428007010034

Reactions of alkenes with aromatic imines in the presence of Lewis acids can formally be regarded as aza-Diels-Alder reactions where the aromatic Schiff base acts as aza-diene. These reactions provide a convenient synthetic route to six-membered nitrogen-containing heterocycles, such as piperidines, tetrahydroquinolines, etc. [1]. Shi et al. recently showed that methylenecyclopropanes are capable of reacting with various imines to give tetrahydroquinoline derivatives spiro-fused to a cyclopropane ring [2]. Analogous reactions with compounds having a cumulated double bond system were not reported. The goal of the present work was to study reactions of substituted vinylidenecyclopropanes with imines in the presence of Lewis
acids and elucidate the mechanism of the process and effect of substituent nature on the reaction direction.

The reactions of 1-methyl-2-(2-methylpropenyli-dene)-1-phenylcyclopropane (I) with N-benzylideneand N-(4-chlorobenzylidene)anilines IIa and IIb in methylene chloride in the presence of boron tri-fluoride-ether complex resulted in the formation of complex mixtures of products. We succeeded in isolating by column chromatography only the corresponding 2-aryl-3-(1-methylethylidene)-1-phenyl-4-[(Z)-1phenylethylidene]pyrrolidines IVa and IVb in up to 10% yield. Their structure was determined on the basis of spectral and analytical data. The ${ }^{1} \mathrm{H}$ NMR spectra of IVa and IVb contained signals (δ, ppm) from methyl-

Scheme 1.

Scheme 2.

VIIIa, VIIIb, XIIa, XIIb
VII, VIII, $\mathrm{A}-\mathrm{B}=\mathrm{CH}_{2}-\mathrm{CH}_{2} ; \mathbf{X I}, \mathbf{X I I}, \mathrm{A}-\mathrm{B}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} ; \mathrm{R}=\mathrm{Ph}(\mathbf{a}), 4-\mathrm{ClC}_{6} \mathrm{H}_{4}(\mathbf{b}) ; \mathrm{LA}=\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{Yb}(\mathrm{OTf})_{3}$.
ene protons (3.96 d and $4.11 \mathrm{~d}, J=11 \mathrm{~Hz}$) and CH proton (5.62 s) in the pyrrolidine ring; signals from the methyl protons appeared at $\delta 1.9-2.3 \mathrm{ppm}$, indicating that the methyl groups are attached to double-bonded carbon atoms.

As shown previously [3, 4], structures analogous to pyrrolidines IVa and IVb with E configuration of the phenylethylidene fragment are characterized by the methyl group signal located in the region $\delta 1.9-$ 2.3 ppm , while in the spectra of the corresponding Z isomers this signal is displaced upfield ($\delta 1.4-1.5 \mathrm{ppm}$) due to shielding by the phenyl group. In the ${ }^{13} \mathrm{C}$ NMR spectra of IVa and IVb, signals at $\delta_{\mathrm{C}} 52.6$ and 65.9 ppm were assigned to C^{2} and C^{5}, respectively; also, signals from methyl carbon atoms, olefinic fragments, and aromatic rings were present.

The mechanism of formation of pyrrolidines IVa and IVb may be interpreted as follows. In the first step, Schiff base II reacts with Lewis acid to give complex III which then acts as electrophile toward initial vinylidenecyclopropane. Here, the electrophilic attack is directed at the central carbon atom of the allene system with formation of cyclopropyl cation \mathbf{V}; the latter undergoes cyclopropyl-allyl rearrangement, yielding cation VI, and cyclization of VI leads to substituted pyrrolidine IV (Scheme 1).

Likewise, 7-(2-methylpropenylidene)bicyclo[4.1.0]heptane (VII) reacted with Schiff bases IIa and IIb in methylene chloride in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ to produce a complex mixture of products, from which we isolated by column chromatography 2 -aryl-3-(1-methylethylidene)-1-phenyl-1,2,3,5,6,7,8,8a-octahydrocyclohepta[b]pyrroles VIIIa and VIIIb in 23 and 37\%
yield, respectively. The structure of VIIIa and VIIIb was determined on the basis of their spectral parameters and elemental compositions. In the ${ }^{1} \mathrm{H}$ NMR spectra of compounds VIIIa and VIIIb we observed signals from protons on $\mathrm{C}^{8 \mathrm{a}}$ and C^{2} at $\delta 4.7$ (br.d, $J=$ 10.2 Hz) and $5.6 \mathrm{ppm}(\mathrm{s})$, respectively, and olefinic proton signal at $\delta 6.0 \mathrm{ppm}(\mathrm{t}, J=6.5 \mathrm{~Hz})$, as well as signals from aromatic protons and protons of methyl and methylene groups. The $\mathrm{C}^{8 a}$ and C^{2} atoms gave signals in the ${ }^{13} \mathrm{C}$ NMR spectra at $\delta_{\mathrm{C}} 64$ and 66 ppm , respectively; methylene carbon nuclei resonated at $\delta_{\text {C }}$ 27.5-31.1 ppm, and methyl carbon nuclei, at $\delta_{\mathrm{C}} 23.1$ and 23.9 ppm .

The mechanism of formation of cycloheptapyrroles VIIIa and VIIIb is analogous to that proposed above for pyrrolidines IVa and IVb, i.e., the process involves formation of cation IX, followed by cyclopropyl-allyl rearrangement leading to intermediate \mathbf{X}. The latter undergoes cyclization to fused pyrrolidines VIIIa and VIIIb (Scheme 2). When the reaction was carried out in the presence of trifluoromethanesulfonic acid, the yield of VIIIb was about 10%.

A complex mixture of products was also formed in the reaction of (Z)-9-(2-methylpropenylidene)bicyclo-[6.1.0]non-4-ene (XI) with Schiff bases IIa and IIb in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (in methylene chloride) or $\mathrm{Yb}(\mathrm{OTf})_{3}$ (in acetonitrile). By preparative thin-layer chromatography we isolated 2-aryl-3-(1-methyl-ethylidene)-1-phenyl-1,2,3,5,6,9,10,10a-octahydrocyclonona $[b]$ pyrroles XIIa and XIIb in 11.4 and 13.7% $\left(\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right)$ or 7.9 and 8.6% yield $\left[\mathrm{Yb}(\mathrm{OTf})_{3}\right]$, respectively. Pyrrolidines XIIa and XIIb were formed with participation of the allene fragment in XI. The struc-
ture of compounds XIIa and XIIb was determined on the basis of their spectral parameters and analytical data. The ${ }^{1} \mathrm{H}$ NMR spectra of XIIa and XIIb contained signals from protons on $\mathrm{C}^{10 \mathrm{a}}$ and C^{2} at $\delta 4.8$ (br.s) and 5.5 ppm (s), respectively; olefinic protons resonated at $\delta 5.2(1 \mathrm{H})$ and $5.4 \mathrm{ppm}(2 \mathrm{H})$; signals from aromatic protons and methyl ($\delta 1.9$ and 2.0 ppm) and methylene groups were also present. The $\mathrm{C}^{10 \mathrm{a}}$ and C^{2} signals appeared in the ${ }^{13} \mathrm{C}$ NMR spectra at $\delta_{\mathrm{C}} 61.0$ and 64.6 ppm , respectively, signals from the methylene carbon atoms were located at $\delta_{\mathrm{C}} 25.4-34.1 \mathrm{ppm}$, and methyl carbon atoms were characterized by chemical shifts of $\delta_{\mathrm{C}} 22.3$ and 23.3 ppm .

1-Methyl-1-phenyl-2-(2-phenylpropenylidene)cyclopropane (XIII) reacted with N -benzylideneaniline (IIa) in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a complex mixture of products; from this mixture we isolated by column chromatography 8% of pure 1,2-di-phenyl-3,4-bis[(Z)-1-phenylethylidene]pyrrolidine (XIV) (Scheme 3). The structure of XIV was assigned on the basis of its spectral parameters. The ${ }^{1} \mathrm{H}$ NMR spectrum of XIV contained signals from methylene protons in the pyrrolidine ring at $\delta 3.97$ (d) and $4.25 \mathrm{ppm}(\mathrm{d}, J=12 \mathrm{~Hz}$), CH proton at $\delta 5.48 \mathrm{ppm}(\mathrm{s})$, and methyl protons at $\delta 2.1$ and 2.3 ppm . The position of the CH_{3} signals indicates that these groups are attached to double-bonded carbon atoms and is consistent with Z configuration of the 1 -phenylethylidene fragments in positions 3 and 4 of the pyrrolidine ring.

Scheme 3.

In the $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-catalyzed reactions of Schiff bases IIa and IIb with vinylidenecyclopropane XV containing two phenyl groups at the double bond we obtained 2-aryl-3-(2-methyl-2-phenylcyclopropylidene)-4,4-diphenyl-1,2,3,4-tetrahydroquinolines XVIa and XVIb in 21 and 13% yield, respectively (Scheme 4). The use of $\mathrm{Yb}(\mathrm{OTf})_{3}$ or $\mathrm{Sc}(\mathrm{OTf})_{3}$ instead of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ did not increase the yield (see Experimental). Compounds XVIa and XVIb showed in the IR spectra an absorption band at $3400 \mathrm{~cm}^{-1}$ due to stretching vibrations of the $\mathrm{N}-\mathrm{H}$ bond. In the ${ }^{1} \mathrm{H}$ NMR spectra of these compounds we observed signals from protons in
the cyclopropane ring ($\delta 0.6 \mathrm{ppm}, \mathrm{d}, J=8.0 \mathrm{~Hz}$; $0.8 \mathrm{ppm}, \mathrm{d}, J=8.0 \mathrm{~Hz}$), methyl protons ($\delta 0.90 \mathrm{ppm}$, s), NH proton ($\delta 4.1 \mathrm{ppm}, \mathrm{s}$), 2-H ($\delta 5.2 \mathrm{ppm}, \mathrm{s}$), and protons in the aromatic rings. The structure of tetrahydroquinolines XVI was unambiguously proved by the results of X-ray analysis of compound XVIb (Fig. 1). Presumably, tetrahydroquinolines XVIa and XVIb are formed through intramolecular FriedelCrafts reaction in intermediate cation XVII.

Scheme 4.

It might be presumed that an electrophile approaches the cumulated bond system in vinylidenecyclopropane from the sterically less hindered side (approach a in Scheme 5). Alternative approach b would lead to the formation of isomeric tetrahydroquinolines XVIII which were not detected in the reaction mixture.

The reactions of 7-diphenylvinylidenebicyclo[4.1.0]heptane (XIX) with Schiff bases IIa and IIb $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right)$ gave complex mixtures of products. Separation of the product mixtures by column chromatography allowed us to isolate $14-16 \%$ of 2-aryl-3-(bicyclo[4.1.0]hept-7-ylidene)-4,4-diphenyl-1,2,3,4-tetrahydroquinolines XXa and $\mathbf{X X b}, 5-7 \%$ of 2-aryl-3-(diphenylmethylidene)-1-phenyl-1,2,3,5,-6,7,8,8a-octahydrocyclohepta[b]pyrroles XXIa and XXIb, 6% of 3^{\prime}-methylidene-2',2'-diphenylspiro[bicy-clo[4.1.0]heptane-7,1'-cyclopropane] (XXII), and 4\% of 5-phenyl-8,9,10,11-tetrahydro-7H-cyclohepta $[a]$ naphthalene (XXIII) (Scheme 6).

The structure of products XX-XXIII was determined on the basis of their spectral and analytical data.

Scheme 5.

The IR spectra of $\mathbf{X X a}$ and $\mathbf{X X b}$ contained an absorption band at $3400 \mathrm{~cm}^{-1}$, corresponding to stretching vibrations of the NH group. In the ${ }^{1} \mathrm{H}$ NMR spectra of XXa and XXb signals at $\delta 3.9$ (br.s, NH), 5.1 (s, 2-H), and $0.5-1.3 \mathrm{ppm}(10 \mathrm{H}$, bicyclo[4.1.0]heptane fragment), as well as aromatic proton signals, were present. Compounds XXIa and XXIb displayed in the ${ }^{1} \mathrm{H}$ NMR spectra signals from protons on $\mathrm{C}^{8 \mathrm{a}}$ and C^{2} at $\delta 4.5$ (br.d, $J=10.2 \mathrm{~Hz}$) and $5.6 \mathrm{ppm}(\mathrm{s})$, respectively, olefinic proton at $\delta 5.5 \mathrm{ppm}(\mathrm{t}, J=6.5 \mathrm{~Hz})$, methylene groups in the region $\delta 1.3-2.3 \mathrm{ppm}$, and aromatic protons. Their ${ }^{13} \mathrm{C}$ NMR spectra contained signals from $\mathrm{C}^{8 \mathrm{a}}$ and C^{2} at $\delta_{\mathrm{C}} 64.3$ and 68.2 ppm and methylene carbon atoms in the region $\delta_{\mathrm{C}} 26.5-33.3 \mathrm{ppm}$. The structure of XXIa was finally proved by the X-ray diffraction data (Fig. 2).

In the IR spectrum of XXII we observed an absorption band at $1790 \mathrm{~cm}^{-1}$, which arises from stretching vibrations of the exocyclic double bond in the methylidenecyclopropane fragment. The ${ }^{1} \mathrm{H}$ NMR spectrum of
this compound contained singlets at $\delta 5.21$ and 5.42 ppm from the protons at the double bond and signals from protons in the aromatic substituents and bicyclo[4.1.0]heptane fragment ($\delta 1.3-2.0 \mathrm{ppm}$). Carbon atoms at the exocyclic double bond resonated in the ${ }^{13} \mathrm{C}$ NMR spectrum at $\delta_{\mathrm{C}} 95.8 \mathrm{ppm}$; the spiro[2.2]pentane fragment gave signals at $\delta_{\mathrm{C}} 20.1\left(\mathrm{C}^{1}, \mathrm{C}^{6}\right), 23.4$ $\left(\mathrm{C}^{7}\right), 32.9\left(\mathrm{C}^{8}\right)$, and $126.3\left(\mathrm{C}^{9}\right) \mathrm{ppm}$; and signals from the $\mathrm{C}^{2}-\mathrm{C}^{6}$ methylene groups appeared in the region $\delta_{\mathrm{C}} 20.8-22.0 \mathrm{ppm}$. The structure of XXII was finally proved by X-ray analysis (Fig. 3).

The formation of methylidenecyclopropane XXII was observed only when the reactions of XIX with IIa and IIb were carried out in methylene chloride. No compound XXII was detected in the reaction performed in dichloroethane. These findings suggest that solvent molecule is involved in the process. Compound XXII was not formed in the absence of Schiff base II.

Naphthalene derivative XXIII was formed as a result of isomerization of initial vinylidenecyclopropane

Scheme 7.

XIX by the action of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. Isomerizations of some vinylidenecyclopropanes into naphthalene and methylidenecyclopropane derivatives in the presence of Lewis acids have been reported [5]. We have found that compound XIX in methylene chloride in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ is quantitatively converted into naphthalene XXIII: the yield of the product isolated by column chromatography is 97%. The NMR spectra of the reaction mixture contained no signals assignable to other compounds. Scheme 7 shows a probable mechanism of formation of compound XXIII. Initially, vinylidenecyclopropane XIX reacts with the catalyst to give complex XXIV which is converted into zwit-

Fig. 1. Structure of the molecule of 2-(4-chloro-phenyl)-3-(2-methyl-2-phenylcyclopropylidene)-4,4-diphenyl-1,2,3,4-tetrahydroquinoline (XVIb) according to the X -ray diffraction data.
terionic species $\mathbf{X X V}$; cyclopropyl-allyl rearrangement of the latter produces intermediate XXVI, and the subsequent intramolecular Friedel-Crafts reaction and 1,3-hydride shift in tricyclic compound XXVII lead to the final product. Compound XXIII showed in the ${ }^{1} \mathrm{H}$ NMR spectrum signals from methylene protons in the region $\delta 1.8-3.4 \mathrm{ppm}$ and aromatic protons in the region $\delta 7.3-8.3 \mathrm{ppm}$. Methylene carbon atoms resonated in the ${ }^{13} \mathrm{C}$ NMR spectrum at $\delta_{\mathrm{C}} 27.3-37.1 \mathrm{ppm}$.

Most probably, the main factor determining the direction of the examined reactions is the nature of substituents at the double bond in the initial vinylidenecyclopropane, i.e., their ability to participate in the stabilization of the carbocation formed in the first stage. Our results show that only products whose formation involves cyclopropyl-allyl rearrangement (substituted pyrrolidines) can be isolated from substrates having methyl groups at the double bond. If a phenyl group is present at the double bond in the substrate molecule, the process leads mainly to compounds formed via intramolecular Friedel-Crafts reaction, namely tetrahydroquinoline derivatives.

EXPERIMENTAL

The IR spectra were recorded from 2% solutions in chloroform on a UR-20 spectrometer. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Bruker DPX-300 instrument (300.13 MHz for ${ }^{1} \mathrm{H}$) from 2% solutions in CDCl_{3}. The elemental analyses were obtained on a Hewlett-Packard 185-B CHN analyzer. The melting points were were determined on a Boetius melting point apparatus. The progress of reactions and the purity of products were monitored by thin-layer chromatography on Silufol UV-254 plates. Column chromatography was performed using silica gel L 100-160 (100-160 $\mu \mathrm{m})$ and $\mathrm{L} 40-100(40-100 \mu \mathrm{~m})$. Intial
vinylidenecyclopropanes I, VII, and XI were synthesized as described in [6], and compounds XIII, XV, and XIX, by the procedure reported in [7].

3-(1-Methylethylidene)-1,2-diphenyl-4-[(Z)-1phenylethylidene]pyrrolidine (IVa). A $10-\mathrm{ml}$ roundbottom flask was charged under argon with 0.5 g $(2.7 \mathrm{mmol})$ of vinylidenecyclopropane $\mathbf{I}, 0.49 \mathrm{~g}$ (2.7 mmol) of Schiff base IIa, and 3 ml of anhydrous methylene chloride. Boron trifluoride-ether complex, $0.08 \mathrm{~g}(0.54 \mathrm{mmol})$, was added dropwise under stirring, and the mixture was stirred for 3 days at room temperature under argon. The solvent was evaporated, and the residue was subjected to column chromatography using hexane-ethyl acetate ($50: 1$, by volume) as eluent. Yield $0.096 \mathrm{~g}(9.8 \%)$, amorphous substance. ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 1.99 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 2.02 \mathrm{~s}$ ($3 \mathrm{H}, \mathrm{Me}$), $2.29 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 3.94 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=\right.$ $10.9 \mathrm{~Hz}), 4.09 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=10.9 \mathrm{~Hz}\right), 5.41 \mathrm{~s}(1 \mathrm{H}$, $\mathrm{CH}), 6.46-6.66 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 6.97-7.05 \mathrm{~m}(5 \mathrm{H}$, $\left.\mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: 21.3, 21.4, 23.6 (Me), $52.8\left(\mathrm{C}^{5}\right), 65.9\left(\mathrm{C}^{2}\right), 112.9,116.8,126.3,129.7$, 130.3, 131.1, 131.4, 131.7, 133.2, 133.6, 135.9, 136.3, 141.1, 142.8, 147.5. Found, \%: C 88.58; H 7.32; N 3.69. $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}$. Calculated, \%: C 88.72; H 7.45; N 3.83.

2-(4-Chlorophenyl)-3-(1-methylethylidene)-1-phenyl-4-[(Z)-1-phenylethylidene]pyrrolidine (IVb) was synthesized in a similar way from 0.5 g (2.7 mmol) of vinylidenecyclopropane $\mathbf{I}, 0.58 \mathrm{~g}$ (2.7 mmol) of Schiff base IIb, and $0.08 \mathrm{~g}(0.27 \mathrm{mmol})$ of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in 3 ml of anhydrous methylene chloride. Yield $0.091 \mathrm{~g}(8.7 \%)$. Amorphous substance. ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 1.97 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 2.02 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me})$, $2.26 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 3.95 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=10.9 \mathrm{~Hz}\right), 4.07 \mathrm{~d}$ $\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=10.9 \mathrm{~Hz}\right), 5.44 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}), 6.58-6.89 \mathrm{~m}$ $\left(9 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.08-7.26 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: 21.2, 21.5, $23.4(\mathrm{Me}), 52.6\left(\mathrm{C}^{5}\right), 65.9$ (C^{2}), 112.8, 116.9, 127.8, 128.2, 129.7, 130.3, 131.5, 132.3, 133.1, 133.6, 134.1, 134.6, 136.2, 142.8, 143.4, 147.6. Found, \%: C 80.89; H 6.47; N 3.41. $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{ClN}$. Calculated, \%: C 81.08; H 6.55; N 3.50 .

3-(1-Methylethylidene)-1,2-diphenyl-1,2,3,5,6,7,-8,8a-octahydrocyclohepta $[b]$ pyrrole (VIIIa). A $5-\mathrm{ml}$ round-bottom flask was charged under argon with $0.25 \mathrm{~g}(1.8 \mathrm{mmol})$ of vinylidenecyclopropane VII, $0.32 \mathrm{~g}(1.8 \mathrm{mmol})$ of Schiff base IIa, and 3 ml of anhydrous methylene chloride, and $0.05 \mathrm{~g}(0.35 \mathrm{mmol})$ of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was added dropwise under stirring. The mixture was stirred for 3 days at room temperature under argon and evaporated, and the residue was subjected to column chromatography on silica gel

Fig. 2. Structure of the molecule of 3-(diphenylmethyli-dene)-1,2-diphenyl-1,2,3,5,6,7,8,8a-octahydrocyclohepta[b]pyrrole (XXIa) according to the X-ray diffraction data.
(gradient elution with hexane-ethyl acetate, 45:1, $40: 1,35: 1$, by volume). Yield $0.13 \mathrm{~g}(23 \%)$, colorless crystals, mp $137-139^{\circ} \mathrm{C}$ (from MeOH). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $1.13-1.14 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.78-2.10 \mathrm{~m}$ $\left(4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.94 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 1.98 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 2.28-$ $2.48 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.73 \mathrm{~d}(1 \mathrm{H}, \mathrm{CH}, J=10.2 \mathrm{~Hz})$, $5.65 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}), 6.06 \mathrm{t}(1 \mathrm{H},=\mathrm{CH}, J=6.5 \mathrm{~Hz}), 6.57-$

Fig. 3. Structure of the molecule of 3 '-methylidene-2', 2 '-di-phenylspiro[bicyclo[4.1.0]heptane-7,1'-cyclopropane] (XXII) according to the X-ray diffraction data.
$6.64 \mathrm{~m}\left(3 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.10-7.25 \mathrm{~m}\left(7 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: 23.2, $24.0(\mathrm{Me}), 27.6,29.5,29.6$, $31.0\left(\mathrm{CH}_{2}\right), 64.5\left(\mathrm{C}^{5}\right), 66.6\left(\mathrm{C}^{2}\right), 115.2,116.5,126.4$, $126.8,127.9,128.5,128.8,129.1,133.7,143.6,145.0$. Found, \%: C 87.46; H 8.29; N 4.35. $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}$. Calculated, \%: C 87.49; H 8.26; N 4.35 .

2-(4-Chlorophenyl)-3-(1-methylethylidene)-1-phenyl-1,2,3,5,6,7,8,8a-octahydrocyclohepta $[b]$ pyrrole (VIIIb). a. Compound VIIIb was synthesized as described above for VIIIa from $0.25 \mathrm{~g}(1.7 \mathrm{mmol})$ of vinylidenecyclopropane VII, $0.37 \mathrm{~g}(1.7 \mathrm{mmol})$ of Schiff base IIb, and $0.025 \mathrm{~g}(0.17 \mathrm{mmol})$ of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in 3 ml of anhydrous methylene chloride. Yield 0.23 g (37\%), colorless crystals, mp $161-162^{\circ} \mathrm{C}$ (from $\mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $1.11-1.14 \mathrm{~m}(2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.79-2.11 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.90 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 1.97 \mathrm{~s}$ ($3 \mathrm{H}, \mathrm{Me}$), $2.24-2.46 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.68 \mathrm{~d}(1 \mathrm{H}, \mathrm{CH}$, $J=10.2 \mathrm{~Hz}), 5.62 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}), 6.06 \mathrm{t}(1 \mathrm{H},=\mathrm{CH}, J=$ $6.5 \mathrm{~Hz}), 6.58-6.63 \mathrm{~m}\left(3 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.05-7.17 \mathrm{~m}(6 \mathrm{H}$, $\mathrm{H}_{\text {arom }}$). ${ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: 23.1, $24.0(\mathrm{Me})$, 27.5, 29.4, 29.6, $31.0\left(\mathrm{CH}_{2}\right), 64.5\left(\mathrm{C}^{5}\right), 66.0\left(\mathrm{C}^{2}\right)$, 115.3, 116.8, 126.7, 128.7, 129.1, 129.2, 132.4, 133.4, 142.1, 144.7, 145.7. Found, \%: C 79.38; H 7.24; N 3.85. $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{ClN}$. Calculated, \%: C 79.21; H 7.20; N 3.85 .
b. Trifluoromethanesulfonic acid, 0.14 g (0.34 mmol), was added dropwise to a mixture of $0.25 \mathrm{~g}(1.7 \mathrm{mmol})$ of vinylidenecyclopropane VII, $0.39 \mathrm{~g}(1.7 \mathrm{mmol})$ of Schiff base IIb, and 3 ml of anhydrous methylene chloride under stirring in a stream of argon. The mixture was stirred for 3 days at room temperature under argon and evaporated, and the residue was subjected to column chromatography on silica gel using hexane-ethyl acetate ($50: 1$, by volume) as eluent. Yield $0.062 \mathrm{~g}(10 \%)$.

3-(1-Methylethylidene)-1,2-diphenyl-1,2,3,5,-6,9,10,10a-octahydrocyclonona[b]pyrrole (XIIa). a. Boron trifluoride-ether complex, 0.082 g $(0.58 \mathrm{mmol})$, was added dropwise to a mixture of 0.5 g $(2.9 \mathrm{mmol})$ of vinylidenecyclopropane XI, 0.52 g (2.9 mmol) of Schiff base IIa, and 3 ml of anhydrous methylene chloride under stirring in a stream of argon. The mixture was stirred for 3 days at room temperature under argon and evaporated, and the residue was subjected to preparative thin-layer chromatography using hexane-ethyl acetate ($50: 1$, by volume) as eluent. Yield 0.11 g (11.4%), light yellow oily substance. IR spectrum, $v, \mathrm{~cm}^{-1}: 1160,1270,1380,1460,1510$, 1610, 2870, 2940, 3050. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $1.76-1.82 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.85-2.04 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.93 \mathrm{~s}$
$(3 \mathrm{H}, \mathrm{Me}), 2.01 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 2.11-2.20 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.39-2.47 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.81$ br.s $(1 \mathrm{H}, \mathrm{CH}), 5.12-$ $5.21 \mathrm{~m}(1 \mathrm{H},=\mathrm{CH}), 5.35-5.45 \mathrm{~m}(2 \mathrm{H},=\mathrm{CH}), 5.47 \mathrm{~s}$ $(1 \mathrm{H}, \mathrm{CH}), 6.70-6.90 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.19-7.28 \mathrm{~m}(6 \mathrm{H}$, $\left.\mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: 22.2, 23.3 (Me), $25.4,28.5,29.8,34.1\left(\mathrm{CH}_{2}\right), 61.0\left(\mathrm{C}^{5}\right), 64.6\left(\mathrm{C}^{2}\right)$, 113.5, 116.9, 125.8, 129.3, 130.1, 130.9, 131.3, 131.4, 131.5, 131.6, 135.7, 138.2, 147.5. Found, \%: C 87.67; H 8.14; N 3.83. $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}$. Calculated, \%: C 87.84; H 8.22; N 3.94 .
b. A mixture of $0.5 \mathrm{~g}(2.9 \mathrm{mmol})$ of vinylidenecyclopropane XI, $0.52 \mathrm{~g}(2.9 \mathrm{mmol})$ of Schiff base IIa, 120 mg of $\mathrm{Yb}(\mathrm{OTf})_{3}$, and 3.5 ml of anhydrous acetonitrile was stirred for 4 days at room temperature under argon. The solvent was distilled off, and the residue was subjected to preparative thin-layer chromatography using hexane-ethyl acetate ($50: 1$, by volume) as eluent. Yield 0.076 g (7.9%).

2-(4-Chlorophenyl)-3-(1-methylethylidene)-1-phenyl-1,2,3,5,6,9,10,10a-octahydrocyclonona[b]pyrrole (XIIb) was synthesized in a similar way from $0.5 \mathrm{~g}(2.9 \mathrm{mmol})$ of vinylidenecyclopropane XI and $0.62 \mathrm{~g}(2.9 \mathrm{mmol})$ of Schiff base IIb in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{Yb}(\mathrm{OTf})_{3}$. Yield $0.15 \mathrm{~g}(13.7 \%, a)$, $0.094 \mathrm{~g}(8.6 \%, b)$, light yellow oily substance. IR spectrum, $v, \mathrm{~cm}^{-1}: 1030,1110,1370,1460,1510,1610$, 2870, 2940, 3040. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $1.73-$ $1.79 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.87-2.06 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.95 \mathrm{~s}(3 \mathrm{H}$, $\mathrm{Me}), 2.02 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 2.12-2.22 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.40-$ $2.48 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.83$ br.s $(1 \mathrm{H}, \mathrm{CH}), 5.17-5.26 \mathrm{~m}$ $(1 \mathrm{H},=\mathrm{CH}), 5.36-5.47 \mathrm{~m}(2 \mathrm{H},=\mathrm{CH}), 5.49 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH})$, $6.73-6.90 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.24-7.35 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$. ${ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: 22.2, 23.3 (Me), 25.5, 28.5, 29.9, $34.2\left(\mathrm{CH}_{2}\right), 61.1\left(\mathrm{C}^{5}\right), 64.7\left(\mathrm{C}^{2}\right), 113.4$, 117.1, 126.1, 127.9, 129.1, 129.6, 130.2, 130.8, 131.3, 131.5, 132.4, 134.7, 140.5, 147.4. Found, \%: C 80.19; H 7.17; N 3.47. $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{ClN}$. Calculated, \%: C 80.08; H 7.24; N 3.59 .

1,2-Diphenyl-3,4-bis[(Z)-1-phenylethylidene]pyrrolidine (XIV). Boron trifluoride-ether complex, $0.029 \mathrm{~g}(0.2 \mathrm{mmol})$, was added dropwise to a mixture of 0.25 g (1.0 mmol) of vinylidenecyclopropane XIII, $0.18 \mathrm{~g}(1.0 \mathrm{mmol})$ of Schiff base IIa, and 2 ml of anhydrous methylene chloride under stirring in a stream of argon. The mixture was stirred for 3 days at room temperature under argon, the solvent was evaporated, and the residue was subjected to column chromatography on silica gel using hexane-ethyl acetate ($40: 1$, by volume) as eluent. Yield $0.034 \mathrm{~g}(8.1 \%)$, amorphous substance. ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 2.11 \mathrm{~s}$
$(3 \mathrm{H}, \mathrm{Me}), 2.28 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 3.97 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=\right.$ $12.1 \mathrm{~Hz}), 4.25 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=12.1 \mathrm{~Hz}\right), 5.48 \mathrm{~s}(1 \mathrm{H}$, CH), 6.55-7.41 m ($20 \mathrm{H}, \mathrm{H}_{\text {arom }}$). Found, \%: C 89.73; H 6.65; N 3.14. $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}$. Calculated, \%: C 89.89; H 6.84; N 3.28 .

3-(2-Methyl-2-phenylcyclopropylidene)-2,4,4-tri-phenyl-1,2,3,4-tetrahydroquinoline (XVIa). a. Boron trifluoride-ether complex, $0.058 \mathrm{~g}(0.4 \mathrm{mmol})$, was added dropwise to a mixture of $0.29 \mathrm{~g}(0.9 \mathrm{mmol})$ of vinylidenecyclopropane $\mathbf{X V}, 0.17 \mathrm{~g}(0.9 \mathrm{mmol})$ of Schiff base IIa, and 3 ml of anhydrous methylene chloride under stirring in a stream of argon. The mixture was stirred for 3 days at room temperature under argon, the solvent was evaporated, and the residue was subjected to column chromatography on silica gel using hexane-ethyl acetate ($50: 1$, by volume) as eluent. Yield 0.097 g (21%), colorless crystals, mp $195-196^{\circ} \mathrm{C}$ (from EtOH). IR spectrum, $v, \mathrm{~cm}^{-1}$: 1080, 1110, 1170, 1260, 1290, 1320, 1470, 1500, 1620, 1780, 2960, 3050, 3400. ${ }^{1}$ H NMR spectrum, δ, ppm: $0.53 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=8.5 \mathrm{~Hz}\right), 0.83 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=\right.$ 8.5 Hz), $0.91 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 4.11 \mathrm{br} . \mathrm{s}(1 \mathrm{H}, \mathrm{NH}), 5.23 \mathrm{~s}$ $(1 \mathrm{H}, \mathrm{CH}), 6.52-7.38 \mathrm{~m}\left(24 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: $21.5(\mathrm{Me}), 23.4\left(\mathrm{CH}_{2}\right), 35.1(\mathrm{C}$, cyclopropane), $60.6\left(\mathrm{C}^{4}\right), 62.0\left(\mathrm{C}^{2}\right), 115.1,117.6,125.1$, 125.3, 126.5, 126.8, 127.0, 127.8, 128.1, 128.7, 129.7, 130.1, 131.7, 131.9, 135.0, 144.4, 145.2, 145.3, 145.7, 146.0. Found, \%: C 90.65; H 6.32; N 2.91. $\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{~N}$. Calculated, \%: C 90.76; H 6.38; N 2.86.
b. A mixture of $50 \mathrm{mg}(0.16 \mathrm{mmol})$ of vinylidenecyclopropane XV, 29 mg (0.16 mmol) of Schiff base IIa, 27 mg of $\mathrm{Yb}(\mathrm{OTf})_{3}$, and 0.5 ml of anhydrous methylene chloride was stirred for 5 days at room temperature under argon. The solvent was distilled off, and the residue was subjected to preparative thin-layer chromatography using hexane-ethyl acetate ($50: 1$, by volume) as eluent. Yield $5.8 \mathrm{mg}(7.6 \%)$. When the reaction time was prolonged to 10 days, the yield of XVIa was 9.8 mg (12.8%).
c. A mixture of $50 \mathrm{mg}(0.16 \mathrm{mmol})$ of vinylidenecyclopropane XV, 29 mg (0.16 mmol) of Schiff base IIa, 22 mg of $\mathrm{Sc}(\mathrm{OTf})_{3}$, and 0.5 ml of anhydrous methylene chloride was stirred for 5 days at room temperature under argon. The solvent was distilled off, and the residue was subjected to preparative thin-layer chromatography using hexane-ethyl acetate ($50: 1$, by volume) as eluent. Yield 2.6 mg (3.4%). When the reaction time was prolonged to 10 days, the yield of XVIa was 4.4 mg (5.7\%).

2-(4-Chlorophenyl)-3-(2-methyl-2-phenylcyclo-propylidene)-4,4-diphenyl-1,2,3,4-tetrahydroquino-
line (XVIb) was synthesized in a similar way from $0.21 \mathrm{~g}(0.7 \mathrm{mmol})$ of vinylidenecyclopropane $\mathbf{X V}$ and $0.15 \mathrm{~g}(0.7 \mathrm{mmol})$ of Schiff base IIb in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. Yield 0.048 g (13%), colorless crystals, $\mathrm{mp} 231-232^{\circ} \mathrm{C}$ (from EtOH). IR spectrum, $v, \mathrm{~cm}^{-1}$: 1050, 1090, 1110, 1180, 1270, 1290, 1320, 1450, 1510, 1620, 1790, 2960, 3050, 3400. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.62 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=8.5 \mathrm{~Hz}\right), 0.85 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2}\right.$, $J=8.5 \mathrm{~Hz}), 0.90 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 4.04$ br.s $(1 \mathrm{H}, \mathrm{NH})$, $5.22 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}), 6.54-7.40 \mathrm{~m}\left(23 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$. Found, \%: C 84.82; H 5.85; N 2.61. $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{ClN}$. Calculated, \%: C 84.79; H 5.77; N 2.67.

Reaction of 7-diphenylvinylidenebicyclo[4.1.0]heptane (XIX) with N-benzylideneaniline (IIa) in the presence of $\mathbf{B F}_{3} \cdot \mathbf{E t}_{\mathbf{2}} \mathbf{O}$. Boron trifluoride-ether complex, $0.048 \mathrm{~g}(0.34 \mathrm{mmol})$, was added dropwise to a mixture of $0.48 \mathrm{~g}(1.7 \mathrm{mmol})$ of compound XIX, $0.306 \mathrm{~g}(1.7 \mathrm{mmol})$ of Schiff base IIa, and 3 ml of anhydrous methylene chloride under stirring in a stream of argon. The mixture was stirred for 3 days at room temperature under argon, the solvent was evaporated, and the residue was subjected to column chromatography on silica gel using hexane-ethyl acetate (40:1, by volume) as eluent to isolate 0.11 g (14%) of 3-(bicyclo[4.1.0]hept-7-yl)-2,4,4-triphenyl-1,2,3,4tetrahydroquinoline ($\mathbf{X X a}$), 0.055 g (7%) of 3 -(di-phenylmethylidene)-1,2-diphenyl-1,2,3,5,6,7,8,8aoctahydrocyclohepta[b]pyrrole (XXIa), 0.030 g (6\%) of 3^{\prime}-methylidene-2',2'-diphenylspiro[bicyclo[4.1.0]-heptane-7,1'-cyclopropane] (XXII), and 0.019 g (4\%) of 5-phenyl-8,9,10,11-tetrahydro-7 H -cyclohepta $a \mathrm{a}$ naphthalene (XXIII).

Compound XXa. Colorless crystals, mp 203-204 ${ }^{\circ} \mathrm{C}$ (from EtOH). IR spectrum, $v, \mathrm{~cm}^{-1}: 1110,1190,1250$, $1290,1330,1470,1510,1620,1780,2970,3050$, 3400. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.48-1.23 \mathrm{~m}(10 \mathrm{H}$, $\left.2 \mathrm{CH}, 4 \mathrm{CH}_{2}\right), 3.98$ br.s $(1 \mathrm{H}, \mathrm{NH}), 5.12 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH})$, $6.50 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}, J=7.1 \mathrm{~Hz}\right), 6.75-7.36 \mathrm{~m}(18 \mathrm{H}$, $\mathrm{H}_{\text {arom }}$). Found, \%: C 89.83; H 6.78; N 2.97. $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{~N}$. Calculated, \%: C 90.02; H 6.89; N 3.09.

Compound XXIa. Colorless crystals, mp 182$183^{\circ} \mathrm{C}$ (from MeOH). IR spectrum, $v, \mathrm{~cm}^{-1}: 1040$, 1090, 1170, 1360, 1450, 1510, 1610, 2870, 2940, 3050. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $1.34-1.83 \mathrm{~m}(4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.00-2.29 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.57$ br.d $(1 \mathrm{H}, \mathrm{CH}$, $J=9.4 \mathrm{~Hz}), 5.42 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}), 5.56 \mathrm{t}(1 \mathrm{H},=\mathrm{CH}, J=$ $5.8 \mathrm{~Hz}), 6.62-6.70 \mathrm{~m}\left(3 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 6.87-7.31 \mathrm{~m}(17 \mathrm{H}$, $\left.\mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: 26.5, 28.7, 29.6, $33.3\left(\mathrm{CH}_{2}\right), 64.3\left(\mathrm{C}^{5}\right), 68.2\left(\mathrm{C}^{2}\right), 112.0,116.4,126.7$, 127.2, 128.2, 128.5, 128.6, 128.8, 129.1, 129.3, 129.4,
129.5, 137.6, 138.5, 143.4, 143.6, 145.1, 146.4. Found, \%: C 90.17; H 6.81; N 3.02. $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{~N}$. Calculated, \%: C 90.02; H 6.89; N 3.09.

Compound XXII. Colorless crystals, mp 104$105^{\circ} \mathrm{C}$ (from MeOH). IR spectrum, $v, \mathrm{~cm}^{-1}: 910,1050$, $1090,1110,1290,1340,1450,1510,1590,1780$, 2840, 2950, 3040. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 1.29$1.96 \mathrm{~m}(10 \mathrm{H}), 5.22 \mathrm{~s}(1 \mathrm{H},=\mathrm{CH}), 5.42 \mathrm{~s}(1 \mathrm{H},=\mathrm{CH})$, $7.23-7.44 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: $20.1(2 \mathrm{CH}), 20.8,21.5,21.8,22.0\left(\mathrm{CH}_{2}\right), 23.4$ $\left(\mathrm{C}^{7}\right), 32.9\left(\mathrm{C}^{8}\right), 95.8\left(=\mathrm{CH}_{2}\right), 126.3\left(\mathrm{C}^{9}\right), 128.2,128.4$, 128.5, 128.9, 129.3, 141.5, 144.8, 147.9. Found, \%: C 92.25; H 7.63. $\mathrm{C}_{22} \mathrm{H}_{22}$. Calculated, \%: C 92.26; H 7.74.

Compound XXIII. Colorless crystals, $\mathrm{mp} 50-51^{\circ} \mathrm{C}$ (from MeOH). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 1.80$2.02 \mathrm{~m}\left(6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 3.10 \mathrm{t}\left(2 \mathrm{H}, \mathrm{CH}_{2}, J=5.1 \mathrm{~Hz}\right)$, $3.39 \mathrm{t}\left(2 \mathrm{H}, \mathrm{CH}_{2}, J=5.1 \mathrm{~Hz}\right), 7.34 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.40-$ $7.59 \mathrm{~m}\left(7 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.99 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}, J=8.4 \mathrm{~Hz}\right)$, $8.28 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}, J=8.4 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: 27.4, 28.1, 28.6, 32.9, $37.1\left(\mathrm{CH}_{2}\right)$, 124.0, 124.9, 126.0, 127.1, 127.4, 128.6, 130.0, 130.7, 131.1, 132.4, 138.4, 138.6, 140.8, 141.7. Found, \%: C 92.49; H 7.44. $\mathrm{C}_{21} \mathrm{H}_{20}$. Calculated, \%: C 92.60; H 7.40.

Reaction of 7-diphenylvinylidenebicyclo[4.1.0]heptane (XIX) with N-(4-chlorobenzylidene)aniline in the presence of $\mathbf{B F}_{3} \cdot \mathbf{E t}_{2} \mathbf{O}$. Boron trifluoride-ether complex, $0.014 \mathrm{~g}(0.19 \mathrm{mmol})$, was added dropwise to a mixture of $0.27 \mathrm{~g}(0.96 \mathrm{mmol})$ of vinylidenecyclopropane XIX, $0.21 \mathrm{~g}(0.96 \mathrm{mmol})$ of Schiff base IIb, and 3 ml of anhydrous methylene chloride under stirring in a stream of argon. The mixture was stirred for 3 days at room temperature under argon, the solvent was evaporated, and the residue was subjected to column chromatography on silica gel using hexaneethyl acetate ($40: 1$, by volume) as eluent to isolate $0.076 \mathrm{~g}(16 \%)$ of 3-(bicyclo[4.1.0]hept-7-yl)-2-(4-chlorophenyl)-4,4-diphenyl-1,2,3,4-tetrahydroquinoline ($\mathbf{X X b}$), 0.024 (5\%) of 2-(4-chlorophenyl)-3-(di-phenylmethylidene)-1-phenyl-1,2,3,5,6,7,8,8a-octahydrocyclohepta[b]pyrrole (XXIb), $0.016 \mathrm{~g}(5.7 \%)$ of compound XXII, and 0.011 (4\%) of cycloheptanaphthalene (XXIII).

Compound XXb. Colorless crystals, mp 217-218 ${ }^{\circ} \mathrm{C}$ (from EtOH). IR spectrum, $v, \mathrm{~cm}^{-1}: 1110,1190,1210$, 1270, 1290, 1340, 1470, 1520, 1610, 1780, 2970, 3050, 3400. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.47-0.54 \mathrm{~m}$ $(1 \mathrm{H}, \mathrm{CH}), 0.64-0.69 \mathrm{~m}(1 \mathrm{H}, \mathrm{CH}), 0.80-1.27 \mathrm{~m}(8 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.93$ br.s $(1 \mathrm{H}, \mathrm{NH}), 5.11 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}), 6.53 \mathrm{~d}$ $\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}, J=7.3 \mathrm{~Hz}\right), 6.71-6.92 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.18-$
$7.33 \mathrm{~m}\left(13 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$. Found, \%: C 83.63; H 6.12; N 2.95. $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{ClN}$. Calculated, \%: C 83.67; H 6.20; N 2.87.

Compound XXIb. Colorless crystals, mp 195$196^{\circ} \mathrm{C}$ (from EtOH). IR spectrum, $v, \mathrm{~cm}^{-1}: 1050,1090$, 1180, 1370, 1450, 1510, 1620, 2870, 2940, 3050. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $1.36-1.79 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.05-2.34 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{CH}_{2}\right), 4.64$ br.d $(1 \mathrm{H}, \mathrm{CH}, J=$ $9.4 \mathrm{~Hz}), 5.45 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}), 5.55 \mathrm{t}(1 \mathrm{H},=\mathrm{CH}, J=$ $5.8 \mathrm{~Hz}), 6.60-6.75 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 6.89-7.30 \mathrm{~m}(14 \mathrm{H}$, $\mathrm{H}_{\text {arom }}$). Found, \%: C 83.48; H 6.34; N 2.78. $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{ClN}$. Calculated, \%: C 83.67; H 6.20; N 2.87.

5-Phenyl-8,9,10,11-tetrahydro-7H-cyclohepta $[a]$ naphthalene (XXIII). Two drops of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ were added to a mixture of $0.1 \mathrm{~g}(0.35 \mathrm{mmol})$ of vinylidenecyclopropane XIX and 1 ml of anhydrous methylene chloride under stirring in a stream of argon. The mixture was stirred for 4 h at room temperature under argon, the solvent was evaporated, and the product was isolated by flash chromatography using hexane as eluent. Yield $0.097 \mathrm{~g}(97 \%)$.

X-Ray diffraction data for compound XVIb. Mo K_{α} irradiation, $\lambda=0.71069 \AA$, graphite monochromator. $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{ClN} . M$ 489.65. Monoclinic crystal system, space group $C 12 / c 1$ (no. 15); unit cell parameters: $a=46.2930(69), b=7.5992(7), c=$ $18.2125(30) \AA ; \beta=112.67(1)^{\circ} ; V=5911.97(2720) \AA^{3} ;$ $d_{\text {calc }}=1.191 \mathrm{~g} / \mathrm{cm}^{3}$. Selected bond lengths (\AA) and bond angles (deg): $\mathrm{N}^{1}-\mathrm{C}^{8 a} 1.399(6), \mathrm{N}^{1}-\mathrm{C}^{2} 1.463(6)$, $\mathrm{C}^{2}-\mathrm{C}^{3} 1.525(6), \mathrm{C}^{3}-\mathrm{C}^{31} 1.320(6), \mathrm{C}^{3}-\mathrm{C}^{4} 1.544(6)$, $\mathrm{C}^{4}-\mathrm{C}^{4 \mathrm{a}} 1.538(6), \mathrm{C}^{4 \mathrm{a}}-\mathrm{C}^{8 \mathrm{a}} 1.405(6), \mathrm{C}^{31}-\mathrm{C}^{33} 1.466(6)$, $\mathrm{C}^{31}-\mathrm{C}^{32} 1.482(6), \mathrm{C}^{32}-\mathrm{C}^{33} 1.532(6) ; \mathrm{C}^{82} \mathrm{~N}^{1} \mathrm{C}^{2} 118.4(4)$, $\mathrm{N}^{1} \mathrm{C}^{2} \mathrm{C}^{3} 106.8(4), \mathrm{C}^{31} \mathrm{C}^{3} \mathrm{C}^{2}$ 123.0(4), $\mathrm{C}^{31} \mathrm{C}^{3} \mathrm{C}^{4}$ 127.0(4), $C^{2} C^{3} C^{4} 109.9(4), C^{4 a} C^{4} C^{3} 109.2(3), C^{3} C^{31} C^{33} 145.1(4)$, $\mathrm{C}^{3} \mathrm{C}^{31} \mathrm{C}^{32} 151.8(4), \mathrm{C}^{33} \mathrm{C}^{31} \mathrm{C}^{32} 62.6(3), \mathrm{C}^{31} \mathrm{C}^{32} \mathrm{C}^{33}$ 58.2(3), $\mathrm{C}^{31} \mathrm{C}^{33} \mathrm{C}^{32}$ 59.2(3).

X-Ray diffraction data for compound XXIa. $\mathrm{Mo} K_{\alpha}$ irradiation, $\lambda=0.71069 \AA$, graphite monochromator. $\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{~N} . M$ 453.62. Triclinic crystal system, space group $P-1$ (no. 2); unit cell parameters: $a=10.346(5), b=10.555(5), c=13.057(5) \AA ; \alpha=$ 110.685(5), $\beta=100.326(5), \gamma=96.187(5)^{\circ} ; V=$ 1289.4(10) $\AA^{3} ; d_{\text {calc }}=1.166 \mathrm{~g} / \mathrm{cm}^{3}$. Selected bond lengths (\AA) and bond angles (deg): $\mathrm{N}^{1}-\mathrm{C}^{8 a} 1.444(3)$, $\mathrm{N}^{1}-\mathrm{C}^{2} 1.482(3), \mathrm{C}^{2}-\mathrm{C}^{3} 1.546(3), \mathrm{C}^{3}-\mathrm{C}^{3 \mathrm{a}} 1.457(3)$, $\mathrm{C}^{3 \mathrm{a}}-\mathrm{C}^{4} 1.340(3), \mathrm{C}^{3 \mathrm{a}}-\mathrm{C}^{8 \mathrm{a}} 1.499(3), \mathrm{C}^{4}-\mathrm{C}^{5} 1.503$ (3), $\mathrm{C}^{5}-\mathrm{C}^{6} 1.510(4), \mathrm{C}^{6}-\mathrm{C}^{7} 1.525(3), \mathrm{C}^{7}-\mathrm{C}^{8} 1.525(3)$, $\mathrm{C}^{8}-\mathrm{C}^{8 a} 1.528(4) ; \mathrm{C}^{8 \mathrm{a}} \mathrm{N}^{1} \mathrm{C}^{2} 114.26(16), \mathrm{N}^{1} \mathrm{C}^{2} \mathrm{C}^{3} 102.5(2)$, $\mathrm{C}^{3 \mathrm{a}} \mathrm{C}^{3} \mathrm{C}^{2} 108.5(2), \mathrm{C}^{4} \mathrm{C}^{3 \mathrm{a}} \mathrm{C}^{3} 128.9(2), \mathrm{C}^{4} \mathrm{C}^{3 \mathrm{a}} \mathrm{C}^{8 \mathrm{a}}$ 120.8(2), $\mathrm{C}^{3} \mathrm{C}^{3 a} \mathrm{C}^{8 a} 109.9(2), \mathrm{C}^{3 a} \mathrm{C}^{4} \mathrm{C}^{5} 124.8(2), \mathrm{C}^{4} \mathrm{C}^{5} \mathrm{C}^{6}$ 117.0(3),
$\mathrm{C}^{5} \mathrm{C}^{6} \mathrm{C}^{7} 116.3(2), \mathrm{C}^{6} \mathrm{C}^{7} \mathrm{C}^{8} 114.8(2), \mathrm{C}^{7} \mathrm{C}^{8} \mathrm{C}^{8 \mathrm{a}}$ $113.8(2), \mathrm{N}^{1} \mathrm{C}^{8 \mathrm{a}} \mathrm{C}^{3 \mathrm{a}} 104.8(2), \mathrm{N}^{1} \mathrm{C}^{8 \mathrm{a}} \mathrm{C}^{8} 112.7(2)$, $\mathrm{C}^{3 a} \mathrm{C}^{8 \mathrm{a}} \mathrm{C}^{8} 114.26$ (18).

X-Ray diffraction data for compound XXII.

 Mo K_{α} irradiation, $\lambda=0.71069 \AA$, graphite monochromator. $\mathrm{C}_{22} \mathrm{H}_{22} . M$ 286.41. Monoclinic crystal system $P 12_{1} / n 1$ (no. 14); unit cell parameters: $a=$ 9.7840(14), $b=15.9160(19), c=10.6322(17) \AA ; \beta=$ $102.63(2)^{\circ} ; V=1615.64(65) \AA^{3} ; d_{\text {calc }}=1.177 \mathrm{~g} / \mathrm{cm}^{3}$. Selected bond lengths (\AA) and bond angles (deg): $C^{7}-C^{9} 1.424(4), C^{7}-C^{6} 1.485(4), C^{7}-C^{1} 1.493(4), C^{7}-C^{8}$ $1.540(4), \mathrm{C}^{6}-\mathrm{C}^{1} 1.510(4), \mathrm{C}^{6}-\mathrm{C}^{5} 1.518(4), \mathrm{C}^{5}-\mathrm{C}^{4}$ $1.480(5), \mathrm{C}^{9}-\mathrm{C}^{91} 1.304(4), \mathrm{C}^{9}-\mathrm{C}^{8} 1.495(3), \mathrm{C}^{7}-\mathrm{C}^{9}$ 1.424(4); $\mathrm{C}^{9} \mathrm{C}^{7} \mathrm{C}^{6}$ 135.8(2), $\mathrm{C}^{9} \mathrm{C}^{7} \mathrm{C}^{1}$ 135.1(2), $\mathrm{C}^{6} \mathrm{C}^{7} \mathrm{C}^{1}$ 60.95(19), $\mathrm{C}^{9} \mathrm{C}^{7} \mathrm{C}^{8}$ 69.46(17), $\mathrm{C}^{6} \mathrm{C}^{7} \mathrm{C}^{8}$ 143.0(2), $\mathrm{C}^{1} \mathrm{C}^{7} \mathrm{C}^{8} 138.3(2), \mathrm{C}^{7} \mathrm{C}^{6} \mathrm{C}^{1}$ 59.80(18), $\mathrm{C}^{7} \mathrm{C}^{6} \mathrm{C}^{5}$ 125.4(2), $\mathrm{C}^{1} \mathrm{C}^{6} \mathrm{C}^{5} 120.0(3), \mathrm{C}^{4} \mathrm{C}^{5} \mathrm{C}^{6} 114.1(3), \mathrm{C}^{7} \mathrm{C}^{1} \mathrm{C}^{2} 121.8(2)$, $\mathrm{C}^{7} \mathrm{C}^{1} \mathrm{C}^{6}$ 59.25(17), $\mathrm{C}^{91} \mathrm{C}^{9} \mathrm{C}^{7}$ 151.7(3), $\mathrm{C}^{91} \mathrm{C}^{9} \mathrm{C}^{8}$ 144.6(3), $\mathrm{C}^{7} \mathrm{C}^{9} \mathrm{C}^{8}$ 63.61(18).This study was performed under financial support by the grant for young candidates of sciences at higher schools and academic institutes in St. Petersburg (project no. PD05-1.3-95).

REFERENCES

1. Povarov, L.S., Usp. Khim., 1967, vol. 36, p. 1533; Kobayashi, S., Araki, M., Ishitani, H., Nagayama, S., and Hachiya, I., Synlett, 1995, p. 233; Kobayashi, S., Ishitani, H., and Nagayama, S., Synthesis, 1995, p. 1195; Kobayashi, S., Ishitani, H., and Nagayama, S., Chem. Lett., 1995, p. 423; Kobayashi, S., Hachiya, I., Ishitani, H., and Araki, M., Tetrahedron Lett., 1993, vol. 34, p. 4535; Kobayashi, S., Ishitani, H., Hachiya, I., and Araki, M., Tetrahedron, 1994, vol. 50, p. 11623 ; Kobayashi, S., Synlett, 1994, p. 689; Waldmann, H., Synthesis, 1994, p. 535; Kundig, E.P., Xu, L.H., Romanens, P., and

Bernardinelli, G., Synlett, 1996, p. 270; Hattori, K. and Yamamoto, H., Tetrahedron, 1993, vol. 49, p. 1749; Nagarajan, R., Magesh, C.J., and Perumal, P.T., Synthesis, 2004, p. 69; Jia, X., Lin, H., Huo, C., Zhang, W., Lu, J., Yang, L., Zhao, G., and Liu, Z.-L., Synlett, 2003, p. 1707; Sabitha, G., Reddy, E.V., and Yadav, J.S., Synthesis, 2001, p. 1979; Alcaide, B., Almendros, P., Alonso, J.M., Aly, M.F., and Torres, M.R., Synlett, 2001, p. 1531; Posson, H., Hurvois, J.-P., and Moinet, C., Synlett, 2000, p. 209; Babu, G., Nagarajan, R., Natarajan, R., and Perumal, P.T., Synthesis, 2000, p. 661; Powell, D.A. and Batey, R.A., Tetrahedron Lett., 2003, vol. 44, p. 7569; Fadel, F., Titouani, S.L., Soufiaoui, M., Ajamay, H., and Mazzah, A., Tetrahedron Lett., 2004, vol. 45, p. 5905; Yadav, J.S., Reddy, B.V.S., Reddy, J.S.S., and Rao, R.S., Tetrahedron, 2003, vol. 59, p. 1599; Spanedda, M.V., Hoang, V.D., Crousse, B., Bonnet-Delpon, D., and Begue, J.-P., Tetrahedron Lett., 2003, vol. 44, p. 217; Hermitage, S., Jay, D.A., and Whiting, A., Tetrahedron Lett., 2002, vol. 43, p. 9633; Akiyama, T., Suzuki, M., and Kagoshima, H., Heterocycles, 2000, vol. 52, p. 529; Caille, A.S., Trimble, L., Berthelette, C., and Lau, C.K., Synlett, 1996, p. 669; Laurent-Robert, H., Garrigues, B., and Dubac, J., Synlett, 2000, vol. 1160; Ma, Y., Qian, C., Xie, M., and Sun, J., J. Org. Chem., 1999, vol. 64, p. 6462.
2. Shi, M., Shao, L.-X., and Xu, B., Org. Lett., 2003, vol. 5, p. 579.
3. Pasto, D.J., Chen, A.F.-T., and Binsch, G., J. Am. Chem. Soc., 1973, vol. 95, p. 1553.
4. Pasto, D.J., Borchardt, J.K., Fehlner, T.P., Baney, H.F., and Schwartz, M.E., J. Am. Chem. Soc., 1976, vol. 98, p. 526.
5. Fitjer, L., Angew. Chem., 1975, vol. 87, p. 381; Xu, G.-C., Ma, M., Liu, L.-P., and Shi, M., Synlett, 2005, p. 1869.
6. Sasaki, T., Eguchi, S., and Ogawa, T., J. Org. Chem., 1974, vol. 39, p. 1927.
7. Isagawa, K., Mizuno, K., Sugita, H., and Otsuji, Y., J. Chem. Soc., Perkin Trans. 1, 1991, p. 2283.

